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Magnetic force  
 
The main thesis of this paper is that magnetism is an unnecessary concept from the point of view of 
fundamental Physics since its effects, described by Maxwell electromagnetism, can also be described in 
a more simple way as due to the forces between electrically charged particles when they move relative 
to one another under the hypothesis (of the EVE model) that the intensity and direction of such 
electrodynamic forces depends on the relative velocity of the interacting particles. 
As a first qualitative example consider a particle q of positive electric charge moving with a velocity v 
perpendicularly to what mainstream physics calls a magnetic field B.  
A simple way to create what mainstream physics calls a magnetic field is with a current loop.  
In the following example, Fig[1], the loop is shaped as a square.  
When seen from above, the current (i.e. the net flow of positive charge) performs a counterclockwise 
rotation. This implies that if the current loop is made by a standard neutral wire conductor then its 
conducting electrons (negative charges) will perform a clockwise rotation while its positive charges 
(protons) will, on the average, remain still. It also implies that the magnetic field B will be perpendicular 
to the loop and point in the +Z direction. 
 
 
 
 
 
 
 
 
 
 
      Fig[1] 

 
 
 
 
 
 
 
 
Maxwell electromagnetism (and more precisely the Lorentz force law with an electric field E=0) 
predicts correctly that a positive charge q moving above the loop with a velocity v along the 
semidirection +Y will suffer a force F (green vector in Fig[1]) along the semidirection +X. 
 
The EVE model, based on “simple” hypothesis about the properties of the electric charges (see below), 
predicts on its turn that the positive charge q will indeed suffer a force along the semidirection +X.  
This can be “qualitatively seen” considering that the model predicts that a charge moving parallel to a 
line (or to a segment) of charges suffers an electric force that increases with the relative speed vR of the 
interacting charges as long as that relative speed is small (vR<<c). 
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Note: when the relative speed vR increases above some value (plausibly near vR  > 0.01 c) the model 
predicts instead that the electric force decreases with the relative speed vR of the interacting charges. 
Therefore the current-carrying electrons of the forefront segment of the loop (that move along –Y in 
opposition to the current I) have a bigger speed relative to the charge q than the electrons of the 
background segment of the loop (that move along +Y) and therefore the former electrons exert a bigger 
attraction force on the charge q than the attraction force exerted on q by the electrons of the background 
segment of the loop. 
 
That was only a qualitative description. For more precise quantitative predictions of the model see the 
examples in the following sections of this paper. 
 

Electrodynamic force between two long rectilinear parallel current-carrying conductors 
 
 

 The force between two long rectilinear parallel current-carrying conductors will be described in 
a non orthodox way (ignoring by the time being the mainstream description based on the magnetic field 
or more generally on the Maxwell laws of electromagnetism). 

 
 
 
 

 
 
 
Fig[2] 

 
 
 
 
 

(1) represents an indefinitely long conductor whose current carrying electrons have a speed vE and 
whose protons (or more precisely its positive ions) are at rest in the reference frame of 
description. 

(2) represents an element of current of the second conductor that runs parallel to the first and whose 
current carrying electrons have a speed ve 

 
Let X be the direction along which both conductors proceed. Let Y be the direction perpendicular to X 
joining the conductors. 
 
To simplify it will be supposed that the conductors are made just by static protons and by an equal 
number of moving conducting electrons.  It will also be supposed that both conductors are 
‘homogeneous’ meaning that in all small segments of length ∆l of a conductor there is (macroscopically 
speaking) the same number of electrons, the same number of protons and the same current intensity as in 
any other segment of length ∆l of the same conductor. 
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NOTE 11-A   In a typical wire conductor, besides the current carrier electrons, there are of course a 
great number of other electrons that remain bound to the atoms of the wire and don’t participate in the 
current in the sense that their average velocity is zero. The electric influence of these bound electrons on 
an external charge q will be assumed to be cancelled by the influence of an equal number of static 
protons of the wire. Therefore, assuming that all pieces of a wire conductor have an equal number of 
electrons and protons, to give a full account of the force produced by the conductor on an external 
charge q  it is sufficient to add to the force of the moving “conducting” electrons (i.e. the current 
carriers) the force produced by an equal number of “static” protons.  
 
To avoid second order complications it will also be supposed that, in both conductors, the conducting 
electrons have small speeds (v<<c).  
Let vE be the lab speed of all the conducting electrons of conductor #1 and ve the lab speed of all the 
conducting electrons of conductor #2.  In what follows upper case letters will be used to characterize the 
charges of conductor #1 and lower case letters for those of the current element of conductor #2.  
 
Note: in a real wire conductor not all the pertinent electrons (the current-carriers) have the same speed. 
It can only be said that those pertinent electrons have an average speed v. But since it will be shown that 
the predicted force between these simplified lines of current has a linear dependence on the speed of the 
electrons, it is therefore licit to extend the results to more realistic conductors in which the current 
carrying electrons have a wider variety of speeds (by just considering that the original conductor is the 
addition of a big number of conductors each of which has electrons of a specific speed).   
 
Suppose by the time being that the lab (that is here the reference frame of description) is at rest in the 

aether. 

 
Let  FPp be the Y-component of the total force exerted by all the protons of conductor 1 on the protons 
of the current element 2. 
Let  FEp be the Y-component of the total force exerted by all the electrons of conductor 1 on the protons 
of the current element 2. 
Let  FPe be the Y-component of the total force exerted by all the protons of conductor 1 on the electrons 
of the current element 2. 
Let  FEe be the Y-component of the total force exerted by all the electrons of conductor 1 on the 
electrons of the current element 2. 
 
The Y-component of the total force exerted by conductor (1) on the current element (2) is therefore: 
 
[11-1]     F = FPp + FEp + FPe + FEe    
    
Consider first the case in which both the pertinent charges of the current element and the pertinent 
charges of the rectilinear conductor are all at rest in the lab.  
 
  In mainstream electromagnetism, since Coulomb’s law F = kC Q q/r2  gives the force between two 
charged particles at rest, whose electric charges are respectively Q and q and whose distance is r, it is 
straightforward to calculate/integrate that, for charges at rest in the frame of description, the total force 
that the Q-type charges of a uniform rectilinear infinitely long conductor exert on the q-type charges of 
an element ∆l of a second conductor, whose distance to the first conductor is “y”, can be expressed by: 



 
[11-2]     FQq[0] = (2/y) kC λQ λq ∆l 
     
where kC is Coulomb’s constant,  λQ is the linear density of charge of the Q-type charges of the first 
conductor,  λq is the linear density of charge of the q type charges of the second conductor, ∆l is the 
length of the element of the second conductor (target of the force being measured) and where it has been 

supposed that both the Q-type charges of the first conductor and the q-type charges of the second are at 

rest in the lab.  
(It is assumed that a linear density of charge λ is of negative sign if its overall charge is of negative sign, 
e.g. for a line of electrons. Therefore if λQ  and λq  are both of the same sign, the force FQq[0] of  [11-2] 
will be positive, meaning repulsion). 
 
Hypothesis    
 
 
 
 
 
 
 
 
 
 
 
 
  Fig[3] 
 
The known force between two long rectilinear parallel currents can be predicted if the following 
hypothesis is made: 
 
A uniform infinitely long rectilinear line of Q type charges that move at a speed vQ along the +X 
direction exerts on an element of q type charges that move at a speed vq along the +X direction (and 
hence parallel to the line of Q type charges, see Fig[3]) a force whose Y-component (i.e. perpendicular 
to the straight line of the Q type charges) is given by:     
 
[11-3]   FQq[vQ, vq] = FQq[0] (1 + kB (vq - vQ)2 )   
     
where kB is a constant (with dimension of speed –2) and where  FQq[0] is the force given in [11-2] 
corresponding to vQ = vq = 0.  
 
Note: in the hypothesis [11-3] it must be understood that, when the pertinent group of charges moves 
instead along the –X semi-direction, the sign of its speed must be changed in the expression. For 
example, if the Q-type charges of the line move along +X but the q-type charges of the target move 
along the –X (minus) semi-direction,  the force [11-3] must be calculated as  FQq[vQ, vq] = FQq[0] (1 + kB 
(-vq - vQ)2 ) 
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As explained below the expression [11-3] must be considered only an approximation valid for speeds vQ 
and vq much smaller than the speed of light c. 
 
Therefore the Y-component of the total force expressed in [11-1], considering both the protons and the 
electrons, acting on the current element of conductor #2 due to the indefinitely long conductor #1 is: 
 
 [11-4]                           F = FPp + FEp + FPe + FEe =  
 
 =   FPp[0] (1 + kB (vp – vP)2) + FEp[0] (1 + kB (vp – vE)2) + FPe[0] (1 + kB (ve – vP)2) + FEe[0] (1 + kB (ve – vE)2)  

 
Calling 

 λP = linear density of charge due to the protons of the 1st conductor, 
 λE = linear density of charge due to the electrons of the 1st conductor, 
 λp = linear density of charge due to the protons of the 2nd conductor, 
 λe = linear density of charge due to the electrons of the 2nd conductor 
 
then in the case that both conductors are electrically neutral and that therefore 
 λP = -λE   and  λp  = -λe   
it follows, according to [11-2], that  FPp[0] = FEe[0] = - FPe[0] = - FEp[0] and therefore the force F of 
Eq[11-4] acting on the current element of conductor #2 due to the indefinitely long rectilinear conductor 
#1 simplifies to 
 

F = FPp[0] ( (1 + kB (vp – vP)2) − (1 + kB (vp – vE)2)  − (1 + kB (ve – vP)2) + (1 + kB (ve – vE)2) ) = 
 
[11-5]            

   =  − 2 FPp[0] kB (ve-vp)(vE-vP) 
 
Calling   λ1 = λP = -λE      and     λ2 = λp  = -λe      then the force FPp[0] that represents the force that a 
long straight line of uniformly distributed protons at rest exerts on an element (short segment) of length 
∆l of a parallel line of other uniformly distributed protons also at rest, can be written according to [11-2] 
as: 
 
[11-6]                FPp[0] = (2/y) kC λ1 λ2 ∆l 
 
and therefore the expression [11-5] (that represents the force that an indefinitely long electrically 
neutral, current carrying, conductor exerts on an element of length ∆l of a parallel, also electrically 
neutral, current carrying, conductor) can be rewritten as: 
 
[11-7]                   F  =  −  (4/y) kC λ1 λ2 ∆l kB (ve-vp)(vE-vP)  =  
    
          =    −  (4/y) kC ∆l kB  λ1 (vP -vE)   λ2 (vp-ve)  = 
   
          =   −  (4/y) kC  ∆l kB I1 I2   
 



where it has been taken into account that I1 = λ1 (vP -vE)  is the intensity of the current of the first 
conductor and I2 =  λ2 (vp-ve) that of the second.   
 
When both intensity currents I1 and I2 are of the same sign (semi direction) it is an experimental fact that 
the force is of attraction. That implies that the constant kB introduced in the hypothesis [11-3] must be 
positive so that F takes a negative value when both I1 and I2 have the same sign.  
 
The force exerted by the 1st conductor on a unit length segment of the second conductor is of course, 
taking ∆l=1 in [11-7]: 
 
[11-8]       F  =  -  (4/y) kC  kB I1 I2         
 
But, according to mainstream electromagnetism (and experimentally), the Y-component of the force 
exerted by an infinitely long rectilinear conductor with current I1 on a unit length of a second parallel 
conductor with current  I2  is known to be given (in MKS units) by: 
 
[11-9]      F = - µ0/(2 π y) I1 I2         
 
and therefore the comparison of the model’s description [11-8] with the mainstream’s description [11-9] 
implies that the constant kB of the model must take the value: 
  
[11-10]  kB =  µ0/(8 π kC) 
 
and replacing Coulomb’s constant kC by its MKS value kC = 1/(4 π ε0)   =  µ0 c

2/(4 π) 
 
[11-11]  kB = 1/(2c2)       
 
(where c is the speed of light) 
 
NOTES 11-B. 
-   It is interesting to notice that if both conductors are given a constant velocity V along the direction X 
and therefore the new speeds of the pertinent charges (including the protons) are all increased by V 
according to: 
 vE    vE +V 
 vP    vP +V 
 ve    ve +V 
 vp    vp +V 
then, making those substitutions in [11-4] and making the same assumptions (λ1 = λP = -λE     and    λ2 = 
λp  = -λe) as before, all the terms containing a V cancel out and the same expression [11-5], independent 
of V, is obtained. 
 
 - Below in this paper, it has been  calculated (assuming the paradigms and the hypothesis of the model 
related with the forces between material particles) that, the Y-component of the force that a uniform 
infinitely long rectilinear line of Q type charges at rest in the lab (i.e. when vQ=0) exerts on a q type 
charge that moves at a speed vq parallel to the line behaves indeed according to  FQq[vQ, vq] = FQq[0] (1 
+ kB vq

2)  with kB >0. This assertion is true only if vq << c. 



 
---------------------- 

 
A controversial feature of this description is the prediction of a non-zero force between a long 

rectilinear neutral wire with current and a charge at rest in the lab. According to mainstream 
Electrodynamics this force should be zero because (1) the electric force is zero since the neutral 
conductor has a zero net charge, and (2) the magnetic field due to the current produces (according to the 
Lorentz-force) a zero force on a charge at rest. But according instead to the description proposed above 
the force exerted by the long neutral conductor with current I1 on a charge q at rest relative to the 
conductor (i.e. relative to the protons of the wire) is no longer zero. Consider first, according to the 
hypothesis [11-3], the Y-component of the force that the long current-carrying wire exerts on a test 
charge q moving parallel to the wire with speed vq at a distance y. 
 
[11-12]    FY =   FPq + FEq =    FPq[0] (1 + kB (vq – vP)2) + FEq[0] (1 + kB (vq – vE)2)  
 
where vP and vE are respectively the speeds of the protons and of the electrons of the current carrying 
wire. (A positive speed means a movement along the +x semidirection of the wire).  
But since the protons of the conductor are here assumed to be at rest (vP=0) : 
 
[11-14]       FY =   FPq + FEq =   FPq[0] (1 + kB vq

2 ) +  FEq[0] (1 + kB (vq – vE)2)  
 
But the force that a rectilinear long line of protons at rest exerts on a single test charge +q also at rest 
can be written (in analogy with [11-2] but replacing λq ∆l by q) as  
 
[11-15]   FPq[0] =  (2/y) kC λP q 
 
And similarly, considering that FEq[0] is the force that a rectilinear long line of electrons at rest exerts on 
a single test charge +q also at rest 
 
[11-16]   FEq[0] =  (2/y) kC λE q 
 
and therefore the force [11-14] of both the protons and the electrons of the wire on the test charge q 
takes the form: 
 

[11-17]             FY  = (2/y) kC q  ( λP (1 + kB vq
2 ) + λE (1 + kB (vq – vE)2) )    

 
but the assumed electric neutrality of the conductor implies that  λP = -λE   
and calling  λ1 = λP = -λE    then 
 

FY  = (2/y)  kC q λ1 ( (1 + kB vq
2 ) − (1 + kB (vq – vE)2) )  = 

 
 [11-18]                  =  − (2/y) kC q λ1 kB (vE

2 −2 vE vq)  
 
that for vq = 0 (i.e. for a test charge at rest in the lab) has the non-zero value: 
 



[11-19]       FY[0]  =  − (2/y)  kC q λ1 kB vE
2  

 
and replacing Coulomb’s constant kC by its MKS value 1/(4 π ε0), the force FY[0] would adopt the 
expression:  
 
[11-20]     FY[0]  =  − (2/y) q λ1 kB vE

2 /(4 π ε0)  = 
 
replacing  kB = 1/(2 c2)  
            =  − (1/y) q λ1 vE

2 /(4 π ε0 c
2)   

 
where vE is the speed of the electrons of the electrically neutral current carrying wire. 
Notice that if the charge q is negative then the sign of FY[0] is positive, meaning repulsion  (i.e. a long 
standard wire carrying a current due to the "slow" drift of its electrons should repel an electron that is at 
rest in the lab). The drift speed vE of the electrons of the wire should be "slow" because the equation 
[11-20] has assumed the hypothesis [11-3] and therefore should be considered valid only for vE << c. It 
will be shown below to what extent the model predicts the hypothesis [11-3] with a constant kB>0. 
 
It has recently been found that other authors support independently the existence of this force (that is 
non-orthodox in mainstream Electrodynamics). See for example: A.K.T. Assis et al [1]. In an earlier 
paper A.K.T. Assis [2] deduced such force from Weber’s electrodynamics. 
 

----------------------- 
NOTE 11-D  
 
It is recognized that the prediction made by the model of the force between parallel conductors is by 
itself of limited interest since it corresponds to a very specific non-fundamental force. It is believed 
nevertheless that a description based in a unique fundamental “electro-dynamic force” between two 
charges moving relative to one another can describe all the interactions between moving electric charges 
using Galilean relativity and without the need to introduce the concept of the magnetic field.  To be 
consistent with the other paradigms of this work such electro-dynamic force must be an aether-
implemented force and is therefore expected to behave according to the features already described in 
this work. In particular, since the aetherinos carrying the information of the source charge Q to the target 
charge q do not travel at infinite speed but at a plurality of finite speeds, the force suffered by q at the 
epoch t due to the presence of Q will depend not so much on the state of Q at the epoch t but on the 
history of Q (previous to the epoch t). Since this history can be as varied as can be imagined, the 
expression of the so called “electro-dynamic force” will only be analysed for simple cases of practical 
interest and for which the source charge has had a simple history (e.g. has always been moving at 
constant velocity, or has been moving in a circle at constant speed, or has been oscillating in some 
simple way, etc).  
 
The next step of this study of the forces between electrically charged particles should be to deduce, 
according to the basic hypothesis of the model about the electric charges, the general expression of the 
force produced by a “current element” on a test charge that moves in a general way relative to the 
current element and not necessarily parallel to it. It is believed that this will lead to the right prediction 
of the “Ampère expression” that gives the force between two circuits of current of any shape.  



This “Ampère expression” is interpreted in mainstream physics as the consequence of applying both the 
Lorentz force and the Biot-Savart Law. 
It is advanced that the thesis of this section is to show that from the theoretical point of view, the 
mainstream interpretation is an unnecessary complication and that  “the magnetic field is an unnecessary 
concept from the point of view of fundamental Physics since all the forces between moving charges can 
be described by a unique electro-dynamic force (like the one described in this aether model) that 
depends on the relative velocities of the interacting charges (and is therefore different from the electric 
force of mainstream physics).”  
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Calculus of the force exerted, according to the aether model, by a long rectilinear uniform line 

of charges on a test charge that moves parallel to the line with a speed vq.  
 
It will be shown that the model is consistent with the above hypothesis [11-3].  
 
It was above asserted that the force between two long rectilinear parallel currents can be predicted if the 
following hypothesis is made: 
A uniform, infinitely long, rectilinear line of Q-type charges that move at a speed vQ along the direction 
of the line exerts on a q-type charge that moves at a speed vq parallel to the line of Q type charges a 
force whose component perpendicular to the straight line of the Q type charges is given by:  
    
[11-3]  FQq[vQ, vq] = FQq[0] (1 + kB (vq - vQ)2 )   
     
where    kB = 1/(2c2) and where  FQq[0] is the force, given in [11-2], corresponding to vQ = vq = 0. 
 
 
 
 
 
 
 
 
 Fig[A-11] 
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Suppose an infinitely long rectilinear uniform line of Q-type charges along the X axis. 
Suppose, by the moment, that those charges are at rest in the aether (that will also be the reference frame 
S of description).  
Suppose that the (macroscopic) linear density of the Q-type charges is λ all along the line. 
Suppose a q-type charge (not necessarily of a different type from Q) moving parallel to the line of 
charges at a distance y and with a speed vq. 
 
Consider in the rectilinear line of Q charges an element of length dx that will therefore have a charge λ 
dx. 
Let  ϕ  be the angle that the vector joining the "beginning point" of such element with q makes with the 
axis +x. 
 
It will first be calculated the force exerted on the test particle q by such element. (See Fig A-11). 
 
(Note: This first part of the calculus is similar to the one of  Section 5 although the variables involved 
have been given different names).  
 
 As has been explained in other papers of this work, a material particle (like for instance a Q-type 
charged particle) produces a “redistribution” of the aetherinos that collide with it. Such redistribution, 
that will here be called rQ[vR], represents the excess (or deficit if  rQ[vR] < 0) of aetherinos emerging 
from the particle with the speed vR (relative to the particle), by unit time and by unit solid angle.  
 
It will here be assumed that such rQ[vR]  is isotropic relative to the particle Q and that rQ[vR] does not 
change significantly in time.  
Note: In other sections of this work it is postulated that the redistributions of the basic elementary particles of the 
model are not isotropic (but are instead characterized by an axis of symmetry). It can here be interpreted that the 
Q-type charged particles considered have their intrinsic structure randomly oriented in space and that therefore 
their global redistribution can be considered isotropic. 
 
It will also be assumed here that the function rQ[vR]  depends only on the type of charged particle 
considered but not on its (absolute) velocity relative to the local aether. This assumption can be seen[3] to 
be approximately true when the absolute speed of the particle causing the redistribution is “small” in 
comparison to the average speed of the aetherinos. For example, a particle speed equal to 2c is 
considered “small” in this context. 
(Note: the mentioned average speed of the aetherinos refers to the reference frame in which the local 
aether can be considered at rest). 
 
NOTE: According to the model, the aether is made by aetherinos of two types (n and p) of which, in an 
undisturbed aether, there is approximately an equal number of both types. Furthermore, in an 
undisturbed aether, both types of aetherinos have the same distribution of speeds. The material particles 
of negative electric charge suffer impulsions (i.e. a change of their velocity) when they are collided by 
the n-type aetherinos, while the particles of positive electric charge suffer impulsions when they are 
collided by the p-type aetherinos. When a particle of negative electric charge is collided by a p-type 
aetherino it does not suffer an impulsion but it switches the p-type aetherino into a n-type aetherino. 



Similarly, when a particle of positive electric charge is collided by a n-type aetherino it does not suffer 
an impulsion but it switches the n-type aetherino into a p-type aetherino. 
 
 
The redistribution   rQ[vR]  of aetherinos created by a charged particle (e.g. a Q-type particle) can be 
calculated as follows: 
 
The redistribution r[vR] of a material particle is defined in the model as the “excess or deficit number of 
aetherinos of speed vR (relative to the particle that creates such redistribution) emerging from the 
particle by unit time, by unit solid angle and by unit speed interval". (Its dimension is 1/(T LT-1) = L-1). 
(The excess or the deficit are in relation to the number of aetherinos of that speed that would emerge 
from a region of space of the "size" assignable to the particle if this particle was not there). 
 
Suppose that Q is a particle of unit electric charge and suppose by the time being that Q is at rest in the 
environment (local) aether and that this local aether has an homogeneous and isotropic distribution of 
ρ[v] aetherinos of speed v by unit volume. The number of (switch-type) aetherinos of speed v colliding 
with Q by unit time and by unit solid angle can be calculated to give: 
 

[A-11-0]  [ ] [ ] [ ]
π

ρσ=φ
4

v

2

v
vv S1  

where 
ρ[v]  is the canonical distribution of aetherinos in an undisturbed aether (see [A-11-1] below). 
σS[v]  is the cross section of a unit-charge particle to collisions with (its) switch-type aetherinos of speed 
v relative to the particle. 
 
Note: If Q is a particle of unit positive charge (e.g. a proton) its switch-type aetherinos are the n-type 
aetherinos. If Q is instead, for example, an electron then its switch-type aetherinos are the p-type 
aetherinos. Only the collisions with its switch-type aetherinos contribute to the redistribution created by 
a particle since (by hypothesis) its impulsion-type aetherinos do not change their type neither their speed 
in their collisions with the material particles. 
 
By hypothesis the cross section (averaged over all directions) of a particle of unit electric charge to 
collisions with its switch-type aetherinos is: 

 [A-11-0b]      [ ] ( ) ]vcb[Expa]vb[Expav
2
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2
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where vR is the speed of the incident aetherino relative to the particle, c is the speed of light, bS1 and bS2  
are positive constants, aS1 is a positive constant but  aS2 is a negative constant.  
Note: in the earlier version of this paper, the constant aS2 was inadequately also assigned a positive value 
giving rise to quantitative inconsistencies. 
Note: the second term of the sum (in the right hand side of [A-11-0b]) will be called a negative resonance 
in the cross section. 
The cross section σS is the same function (with the same values of the constants) whether the unit charge 
particle is positive or negative (the only difference being that the positive elementary particles switch the 
n-type aetherinos into p-type aetherinos while the negative elementary particles do the opposite). 
 



Note: The hypothesis [A-11-0b] about the switch cross section σS of a charged particle to aetherinos (as 
well as the mirror hypothesis related to the other interaction cross section σI , see below [A-11-3c]) was 
enounced in earlier analysis of this work with only its first term (i.e. as  σS = aS Exp[- bS vR

2] ). The 
second term a2S Exp[- bS2 (c-vR)2], whose goal is to implement a sharp resonance of the interaction, 
centered at vR=c, was added later as an attempt to account for the stability of aetherino waves in spite of 
the longitudinal dispersion predicted by the model.  
 
The constants aS2  and bS2 have been assigned ad hoc values in this section to account for the correct 
prediction of the constant kB of Eq[11-3]. 
 

 
         

Fig[A-11-7] 
Proposed interaction cross section σS (see Eq [A-11-0b] )  
of a unit-charge particle with its switch-type aetherinos. 
It has a “negative resonance” centered at vR=c  

In this example:  a1S=1,  a2S= −0.11,  bS1 =1.255/c2,  bS2 =700/c2 
 
Notice that since the particle Q (whose redistribution is being calculated) has been supposed to be at rest 
in the aether, the speed vR of the incident aetherinos relative to Q  is equal to the speed v of those 
aetherinos relative to the reference frame of the aether (as a whole). 
 
In the reference frame in which the aether can be considered at rest (i.e. in which the average velocity of 
its aetherinos is zero), the local undisturbed aether is assumed to have an isotropous distribution of 
aetherino speeds given by:  
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where 
ρ[v]    is the total number of aetherinos of speed v by unit volume (and by unit speed interval). 
VM     is the speed for which there is a maximum number of aetherinos (i.e. for which the distribution 
reaches its maximum). 
N0      is the total (considering all speeds) number of aetherinos in unit volume. 



 
 
Notes: 
-  The constant factor 4/(π1/2 VM

3) in the expression of the distribution has been chosen so that, whatever 
VM, the constant N0 always represents the total number of aetherinos by unit volume. This makes easier 
to test the model for different VM.  
-  The distribution [A-11-1] of aetherino speeds (in the reference frame associated with the local aether) 
that the model assigns to the aether has been called “canonical distribution” in other sections of this 
work. 
-  As shown elsewhere in this work, there are many possible mathematical functions that could a priori 
be assigned to the canonical distribution of the aether, giving all very similar predictions. Considering 
that the aether of the model, made of  “point-like aetherinos that do not collide with each other”, is not 
comparable to a gas in thermodynamic equilibrium, it is not imperative to postulate an aether’s 
canonical distribution of the Maxwell type like the ρ[v] of [A-11-1].  
 
Since the φ1[v] of  [A-11-0] gives the number of switch-type aetherinos of speed v colliding with Q in 
unit time and by unit solid angle, then from the definition of redistribution and according to the 
suppositions made above: 
 
 If Q is a particle of unit positive charge its redistribution rp[v] of p-type aetherinos (equal to minus its 
redistribution of rn[v] of n-type aetherinos) will be simply given by: 
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that, since aS1 is a positive constant together with the assumption that  |aS2| << aS1 then r+p[v]  represents 
an excess of p-type aetherinos. 
 
But if Q is a particle of negative unit charge its redistribution of p-type aetherinos (equal to minus its 
redistribution of rn[v] of n-type aetherinos) will be given by: 
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that represents now a deficit of p-type aetherinos. 
 
 
The aetherinical force that a charge Q of the line element dx exerts on the test charge q (in the 
arrangement shown in Fig [A-11]) can now be evaluated as follows:  
 
 In the vicinity of q, that at the epoch of observation of the force is at a distance d from the given charge 
Q (see the Fig[A-11] above), the density of aetherinos (in excess or in deficit) of speed v (per unit speed 
interval)  having emerged from Q is: 
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where: 
ρQ[v, d]    gives the excess/deficit number of such speed v aetherinos in unit volume at the position of q. 
 d          is the distance between a particle Q of the specific element dx and the test particle q at the epoch 
of observation of the force. 
rQ[v]     is the redistribution created by Q (given at [A-11-2] if Q is positive or at [A-11-2b] if Q is 
negative). 
 
  The expression [A-11-3] should be evident considering that, according to the definition of rQ[v] as a flux by unit 

solid angle,   rQ[v]/d2  is the number of aetherinos crossing in unit time, at the vicinity of q, a unit area surface 
placed perpendicular to Qq. The number of speed v aetherinos having crossed such unit surface in a given unit 
time interval can therefore be found in an imaginary “cylinder” of base 1 and length v whose volume 1*v has 
therefore a numerical value equal to that of the speed v. 
 
 
The model postulates that, when an aetherino (of the adequate impulsion-type for the target particle) 
collides with an elementary particle it gives to this particle an elementary aetherinical “impulse”  equal 
to 
 
[A-11-3b]   i1 = h1 vR 
 
where 
vR   is the velocity of the aetherino relative to the particle 
h1    is a positive constant. 
 
Note: as said above, the p-type aetherinos give impulse to the positive charges (but not to the negative 
particles) when they collide with them. Similarly the n-type aetherinos give impulse to the negative 
charges (but not to the positive particles) when they collide with them. 
 
The collision cross section of a unit charge with its impulsion-type aetherinos is by hypothesis: 
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where c is the speed of light and aI1, aI2, bI1, bI2 are positive constants.  This cross section σI is by 
hypothesis exactly the same (with the same values of its constants) whether the collided particle of unit 
charge is positive or negative. 
Furthermore, also by hypothesis of the model, the function giving the impulsion cross section of a 
particle (to its impulsion-type aetherinos) (e.g. [A-11-3c]) is the same function giving the switch cross 
section of a particle (to its switch-type aetherinos) (e.g. [A-11-0b]) and with the same values of their 
constants i.e. aI1=aS1 ,  aI2 = −aS2 ,  bI1=bS1 , bI2 = bS2  (except for the negative sign of aS2) 
 
 



 
 

Fig[A-11-3] 
Proposed interaction cross section σI (see Eq [A-11-3c] )  
of a unit-charge particle with its impulsion-type aetherinos. 
It has a positive “resonance” centered at vR=c  
In this example:  a1I=1,  aI2= 0.11,  bI1 =1.255/c2,  bI2 =700/c2 
 
 
(P.S. Another possibility consistent with the model is that the switch cross section and the impulsion 
cross section of a particle are related by  aS1= κ aI1 ,  aS2 = - κ aI2 with the constant κ being the same for 
all elementary particles. The "b" constants are by hypothesis the same, i.e. bI1=bS1 , bI2 = bS2 for all 
ordinary elementary particles).    
 
NOTES: 
 
a)  To predict, for low current carrier speeds, a force between two long rectilinear parallel currents equal 
to FQq[vQ, vq] = FQq[0] (1 + kB (vq - vQ)2 )   with  kB = 1/(2c2)  (see Eqs [11-3] and [11-11]) the constants 
aS2 and bS2 of the switch cross section σS[vR] given in [A-11-0b] can be assigned, for example the 
following values: 
bS2 =700/c2        aS2 = −0.11 aS1  
together with the following constants of the impulsion cross section (see Eq[A-11-3c]) 
bI2 =700/c2        aI2 = +0.11 aS1 
or other sets of similar, ad hoc, adequate values. 
The constants bS1  and  bI1 will always be assigned the value 
bS1 = bI1 = 1.255/c2     
to account also for other predictions of the model. 
 
In any case the constant |aS2| of the second term of Eq[A-11-0b] can (and must) be assumed to be much 
smaller (say, two orders of magnitude smaller) than the constant aS1 of the first term.  Similarly the 
constant aI2 of the second term of Eq[A-11-3c] must be assumed to be much smaller than the constant aI1 
of the first term. Due to it, in some contexts (e.g. in the model’s descriptions of the aether drag force, 



gravitation…) the second term is ignored (after having checked that its contribution to those phenomena 
can be neglected). 
 
b)  The constants aS1 ,  aS2 , aI1 and  aI2 ,   have the dimension of cross section (i.e. of surface or L2). 
 
c)  Although the contribution of the second term to the “average over all directions” cross section is 
much weaker than the contribution of the first term, other physical facts (studied in other sections of the 
model) suggest that the contribution of the weak term (called resonance) is as follows: 
As explained in the paper Redistributions of aetherinos due to elementary electric charges of this work, 
the basic charged elementary particles (e.g. electrons and positrons) have, according to the model, an 
internal non-isotropic structure that causes that their collision cross sections with aetherinos (e.g. the σS 
and the σI shown in Eqs [A-11-0b] and [A-11-3c]) are also non-isotropic and, as a consequence, the 
redistributions of aetherinos emerging from those elementary charged particles (e.g. those shown in Eqs 
[A-11-2] and [A-11-2b] below) are also non-isotropic. More precisely, the cross sections emerging from 
those elementary particles as well as their redistributions are assumed to have an axial symmetry. It must 
therefore be understood that the cross sections (and redistributions) of those particles is different along 
the different directions depending on the angle that the direction forms with the symmetry axis of the 
particle. It seems plausible (in other scenarios) that the function describing the cross sections along the 
orthogonal directions to the symmetry axes (i.e. along the equatorial directions of the particle) is fully of 
the type Exp[−b2 (c-vR)2] (i.e. that of the second term of the sums) while the function describing the 
cross sections along the polar directions is fully of the type Exp[−b1 vR

2] (i.e. that of the first term). 
 
  In the scenario of Fig[A-11], the aetherinos responsible of the force being calculated travel along the 
semi direction Qq  and therefore, an aetherino of speed v (in the reference frame S of description) has 
a velocity relative to q given by:  vR = v - vq   
  The Cartesian components of vR are    
 

vRX = (v - vq)X = v Cos ϕ - vq   
 
vRY = (v - vq)Y = v Sin ϕ 
 

and therefore the modulus of vR can be written as: 
 
[A-11-4]   vR = |vR|  =  (v2 + vq

2 –2 v vq Cos ϕ)1/2  
 
 
The Cartesian components of the elementary aetherinical impulse that such aetherino gives to q are 
 
    iX  =  h1  vRX   =   h1 (v Cos ϕ - vq)  
[A-11-5]     

    iY  =  h1  vRY   =   h1  v Sin ϕ 
 
  The number of collisions in unit time between q and the pertinent aetherinos (those whose density is 
given in [A-11-3]) can be calculated considering that in the special reference frame where these pertinent 

aetherinos (those of speed v in S) are at rest the particle q of cross section σq[vR]  sweeps in unit time a 
cylindrical volume of length vR.  Hence this rate of collisions with aetherinos of speed v is: 
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Assuming in what follows that q is an elementary particle of unit electric charge, its cross section σq[vR] 
to impulsion aetherino collisions is just the σI[vR]  postulated above, i.e.  
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The aetherinical impulse given to q by all the n[v] collisions occurring in unit time has therefore the 
Cartesian components: 
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(Remember that the force is defined in the model as the net aetherinical impulse in unit time). 
 
The components of the aetherinical force FQq that a charge Q of the specific line element shown in 
Fig[A-11] exerts on the test charge q are finally obtained adding for the pertinent aetherinos of all 
speeds: 
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where the substitution [A-11-3] has been made.  
 
The Y-component of the force exerted by all the Q-type charges of the dx element is therefore: 
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where λQ is the number of Q-type particles by unit length in the long rectilinear uniform line of charges. 
 
The calculus is especially interested in evaluating the net Y-component of the force that the total line of 
Q-type charges exerts on the test particle q that is moving at speed vq parallel to the line. 
To integrate to all the ϕ it must be observed (see Fig A-11) that the differentials dx and δϕ are related 
by: 

  s = d δϕ 
and by     s = Sin ϕ  dx               
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and since    d = y/(Sin ϕ)   then   dx/d2 = δϕ /y    and therefore the Y-component of the force on q due to 

the whole line of Q-type charges is: 
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which is the Y-component (i.e. perpendicular to the line of charges) of the force exerted by a long 

rectilinear line of Q-type charges, at rest in the lab, on a unit charge q that moves at a speed vq parallel 

to the line (at a distance y). 

Where (see [A-11-4]) the "explicit" expressions of the impulsion cross section σI[vR] of an elementary 
particle q of unit charge (see [A-11-7]) and of the redistribution rQ[v] of a Q-type unit charge (see [A-
11-2])  are: 
 

[ ] [ ] ( ) ][
22/1

q

2

q
2

2I2Iq

2

q
2

1I1IRI )Cosvv2vv(cbExpa)Cosvv2vv(bExpav ϕ−+−−+ϕ−+−=σ  

 

[ ] [ ] [ ] [ ] ( )[ ]( )






















−−−+−

π
=

π
ρσ=

2

M

32

2S2S
2

1S1S3

M
2/3

0
SQ

V

v
ExpvvcbExpavbExpa

V2

N

8

vv
vvr

 
 
where the distribution ρ[v] of aetherino speeds of the local aether (see [A-11-1]) has been made explicit. 
 
 
Some quantitative analysis. 
 
It can be seen that, for very small values of vq, the modulus of the force FY of the expression [A-11-12] 
increases first in a quadratic way and later, for higher values of vq starts to decrease (see the blue curve 
of Fig[A-11-15]).  
 
If it is assumed, ad hoc, that the constants (that appear in the expression [A-11-12]) have, for example, 
the values: 

aS1 = aI1 =1;    bS1 =bI1 = 1.255/c2 ;    −aS2 = aI2 = 0.11 ; bS2 = bI2 700/c2               
then it happens that the force FY can, in its increasing zone (corresponding to small values of vq), be very 
accurately approximated (see the red curve of Fig[A-11-15]) by: 
 
[A-11-15]     FY[vq] = FY[0] (1 + (0.5/c2) vq

2)      approximation of the force FY  for vq << c,   
 
confirming therefore that the hypothesis [11-3] enounced above to describe the force between two long 
rectilinear wires of current can actually be considered a prediction of the model. 
 



 
 
 Fig[A-11-15] 

In blue, prediction of the force [A-11-12]  
that a long rectilinear line of charges exerts on a test charge  
that moves parallel to the line at a speed vq. 
In red, approximation FY[0](1 + 0.5 vq

2/c2) valid for vq << c  
 
 
The blue curve of Fig[A-11-15] corresponds to the assignment   aS1 = aI1 =1;    bS1 =bI1 = 1.255/c2 ;    

−aS2 = aI2 = 0.11 ;   bS2 = bI2 700/c2    of the parameters appearing in such expression of FY. With slightly 
different values of the parameters (maintaining a given relation with each other) adequate predictions 
can also be made in this and in other contexts. But with pairs of values outside such limited range, the 
curve of FY can no longer be approximated (for vq<< c) by the function FY[0](1 + kB vq

2)  with kB = 1/(2 
c2) as is the thesis of this paper. (It can still be approximated by a function of the type FY[0](1 + kB vq

2)  
but with a value of kB different from kB = 1/(2 c2) ). 
 
In other study of the aether model it has been shown that the redistribution of aetherinos created by an 
elementary particle does not depend significantly on the absolute speed V of the particle relative to the 
aether as long as V << VM (where VM is the speed for which the local aether has a maximum number of 
aetherinos). For example, since it is expected that the average speed of the aetherinos of the aether is 
many orders of magnitude bigger than the speed of light, it follows that the redistribution of a particle 
does not vary significantly as long as the absolute speed of the particle is smaller than, say, a few times 
the speed of light. 
 
Considering also that, according to the model, the force between two particles depends only on their 
redistributions of aetherinos and on the relative velocity of the particles, it follows that the force that a 
long rectilinear line of charges at rest (VQ=0) in the reference frame of description exerts on a charge q 
that moves parallel to the line at a speed vq must be very approximately equal to the force that a long 
rectilinear line of charges that move at a speed VQ in the reference frame of description exerts on a 
charge q that moves parallel to the line at a speed vq + VQ and therefore the result [A-11-15]   FY[vq] = 
FY[0] (1 + (0.5/c2) vq

2)   predicted by the model implies also that  



 
[A-11-16]        FY[vQ, vq] = FY[0] (1 + (0.5/c2) (vq - vQ)2 ) 
 
which is equivalent to the hypothesis [11-3] enounced above. 
 
 

--------------------------------- 
 

 
The following graphics (Figs[A-11-16,…,A-11-20]) are also specific evaluations of the above equations 
corresponding to 
  aS1 = aI1 =1;    bS1 =bI1 = 1.255/c2 ;    -aS2 = aI2 = 0.11 ; bS2 = bI2 = 700/c2                
and where it has been supposed (only for the purpose of showing the graphics) that: 
VM=1010 c,   c=1,   N0=1032    
and that in arbitrary units 
 y=1,    h1=1,    λQ=1,     
 
Note: It can be seen that the values assigned by the model to VM and to N0 do not affect the shape (but 
only the height) of the following three graphics 
 
 

 
 
Fig[A-11-16] 

In arbitrary units, prediction, for a wide range of speeds vq, 
 of the force [A-11-12] that a long rectilinear line of charges  
exerts on a test charge that moves parallel at a speed vq. 
                        
 
 



 
     Fig[A-11-17] 
In arbitrary units, prediction of the force that  
a single charge exerts on a test charge that moves directly  

towards or away from the first at a speed vq. 
 
 
 
 

 
 
Fig[A-11-18] 

In arbitrary units, prediction of the transversal force  
that a single charge exerts on a test charge moving at a speed 
 vq at the instant that this test charge passes at its shortest distance 
from (abeam) the first. (Transversal means here the component 
of the force along the direction joining the two charges at the  
instant of observation of the force) 
 
 

 
 



 
P.S. While writing this paper it has been found that, if it is supposed that the sharp resonance terms in 
the interaction cross sections are of the type 
 a2 Exp[-b2 ((c-vR)2)1/2]    instead of  a2 Exp[-b2 (c-vR)2] 

then, better results are predicted in other contexts of the model like for instance a greater stability of the 
wave form and the modulation of radiation when traversing great distances (see Section 8). Therefore 
the new hypothesis for the averaged cross sections of a charged particle to interact with the aetherinos of 
relative speed vR could be: 
 
[A-11-20]   σS[vR]  = aS1 Exp[- bS1 vR

2]  +  aS2 Exp[-bS2 ((c−vR)2)1/2
]     (switch cross section, with aS2 < 0) 

 
[A-11-21]   σI[vR]  = aI1 Exp[- bI1 vR

2]  +   aI2 Exp[-bI2 ((c−vR)2)1/2]      (impulsion cross section) 

 
With those cross sections, a set of parameters that makes a good prediction of the force between two 
long rectilinear parallel current carrying conductors, or more precisely a good fit of the above Eq[A-11-
15] i.e. of 
 
[A-11-15]     fY[vq] = FY[0] (1 + (0.5/c2) vq

2)      approximation, valid for vq << c,  of the 

force FY 
 
is for example: 
aS1 = aI1 =1;    bS1 =bI1 = 1.255/c2 ;    -aS2 = aI2 = 0.1 ; bS2 = bI2 = 42/c           

-------------- 
It has also been found that, if it is supposed that the sharp resonance terms in the interaction cross 
sections are of the type 

 a2 Exp[-b2 ((c-vR)2)1/4
]    

 
then, still better results are predicted in other contexts of the model like for instance a greater stability of 
the wave form and the modulation of radiation when traversing great distances (see Section 8).   The full 
expressions of these cross sections of a charged particle to interact with the aetherinos of relative speed 
vR would now be: 
 
[A-11-22]   σS[vR]  = aS1 Exp[- bS1 vR

2]  +  aS2 Exp[-bS2 ((c−vR)2)1/4]     (switch interaction cross section) 
 
[A-11-23]   σI[vR]  = aI1 Exp[- bI1 vR

2]  +   aI2 Exp[-bI2 ((c−vR)2)1/4
]      (impulsion interaction cross section) 

 
And in what respects this paper, the goal of predicting within the model that the force exerted by a long 
rectilinear line of charges on a charge q that moves parallel to the line at a speed vq is of the type of the 
above Eq[A-11-15]  can now (with these new cross sections) be fulfilled for example with: 
aS1 = aI1 =1;    bS1 =bI1 = 1.255/c2 ;    -aS2 = aI2 = 0.0015 ; bS2 = bI2 = 7/c1/2         
 
Note:  Often in this work (like in the second term of Eq[A-11-20]) a function is written in the form  
(F2)1/2  instead of in the equivalent and simpler form Abs[F]. This is just to remind that the Mathematica 
(of Wolfram Research) software (used in the background all along this work) makes its calculations in a 
much more effective way when the expression is written in the first form.   
 



 
 
 
[3] The paper Redistributions of aetherinos due to elementary electric charges of this work explains the 
simulations that have been done to evaluate the influence that the speed of a particle relative to the aether has on 
the redistribution of aetherinos created by such moving particle. 
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